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An Approach for Second Year Quantum Atomic Physics

based on the Schrödinger equation

Hans Niedderer, Stefan Deylitz and Jürgen Petri

Institute of Physics Education, University of Bremen, 28334 Bremen, Germany

In this paper we describe  the core concepts of the  quantum atomic physics course  we
teach in introductory physics for second year teacher students. The approach has been
developed over nearly twenty years  based on results of several empirical studies on
student understanding and student learning and an evaluation of the whole approach.
The basic concept used to discriminate quantum mechanics from classical mechanics
is the concept of state, especially that of stationary state . Stationary states are
quantitatively determined in many interesting cases by finding graphical solutions of
the Schrödinger equation (ψ-functions ) and corresponding energy eigenvalues with
modeling software on the computer.
The main goal of our approach is to develop a quantum mechanical understanding of
atoms, molecules and solids, which allows to visualize atoms in a more appropriate
way (compared to planetary models ) and is able to explain essential features such as
e.g. size and spectra of atoms, or binding energy of molecules.

I. INTRODUCTION

Our atomic physics approach was developed at the university of Bremen over about 20 years1.

In addition, it has been taught and evaluated in German secondary schools in advanced

physics courses in grade thirteen (age nineteen). Three manuscripts, two in German2  and one

in English language3  can be downloaded from our home page.

From a physics point of view, we use the one-dimensional stationary Schrödinger equation to

understand and calculate spherically symmetric eigenstates in atoms (s states, e.g. in H, He

and Li), covalent binding in molecules and the explanation of energy bands in solids.

From a physics education point of view based on empirical research 4, we prefer an electron

cloud conception of the orbital without any movement of the electron in its stationary state .

The interpretation of e∗ψ2 as a continuous charge density5 is preferred over ψ2 as localization

probability density usually depicted by discrete tiny dots to visualize the shape of the orbital.

II. BASIC INSTRUCTIONAL IDEAS AND PHYSICS CONCEPTS

A. Basic instructional ideas

One of our basic decisions is to put more emphasis on understanding fundamental features of

matter as determined by quantum physics rather than to discuss problems of quantum

philosophy in depth. Such features are the size, ionization energy and spectra of atoms, stable
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distance and binding energy of molecules, energy bands explaining light and electricity in

solids. We therefore focus on stationary states of electrons in atoms, molecules and solids.

Our aim is to better link theory and experiment  and to encourage  students  to see quantum

physics as an ordinary part of physics, i.e. a part of physics where fundamental features of

atoms, molecules and solids can be predicted, calculated and measured as precisely as in

classical physics.

As a further result of the course, we want students to have the competence feeling that they

themselves can do such calculations even in more complex and relevant applications, using

computer tools for modeling physics (not simply for ready made simulations).

The second important idea is to provide a better intuitive understanding of the Schrödinger

equation for stationary states. We  prepare this understanding by elaborating and reflecting the

analogy of mechanical standing waves and by interpreting the Schrödinger equation

mathematically as a statement about the curvature of the ψ-functions. This view can provide a

qualitative description of ψ-functions and their important features for atoms, molecules and

solids without any calculation.

B. Basic physics concepts

1. The concept of stationary state

In quantum mechanics the concept of state is appropriate to replace the concept of orbits.

Here, our discussion will be limited to stationary states. A stationary state in quantum atomic

physics as well as for standing waves is defined by three important characteristics:

• A name: stationary states have names such as numbers, quantum numbers, ground state,
higher state, etc.

• An eigenvalue: stationary states of electrons in atoms, molecules and solids are
characterized by an energy eigenvalue, states of standing waves are characterized by an
eigenfrequency.

• The form: an atom or a standing wave in a stationary state has a certain form. The form
can be described in several different and important ways:

• by describing the nodes (nodal points, nodal lines, or nodal surfaces), e.g. number
and distances of nodes

• by using spatial descriptions of orbitals (such as s and p orbitals),
• by a qualitative description of the ψ-function,
• by a graph of the ψ-function, or
• by a formula for the ψ-function.
(The best understanding results from using all these representations of the form of
amplitude functions.)
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2. The Schrödinger equation (SEQ)

In our course, we make the Schrödinger equation plausible by  linking the de Broglie equation

with the differential equation of standing waves. After that we take this equation as a given

axiomatic basis and apply it to different problems, using always only one variable x or r. The

Schrödinger equation in the simplest 1-dimensional case can be written as

′′ = − ⋅ ⋅ − ⋅ψ π ψ8 2
2

m

h
E Ve ( ) (1)

where e∗ψ2 has the meaning of radial charge density. This equation has a very similar

structure to the differential equation of standing waves. On the left side is the second

derivative of a kind of amplitude function, called distribution function (ψ-function or psi-

function), on the right side is the distribution function itself.

3. Interpretation of ψψψψ

We briefly discuss two different kinds of interpretations of the ψ-function in stationary states.

Interpretation I: Localization probability density

In interpretation I ψ2 is seen as probability density of finding the electron. This interpretation

goes back to Born in 1926.

a. Fig. 1 shows the result from a few hundred localization

measurements of the electron in the ground state of the H

atom by displaying the localized electrons as tiny dots.

b. The probability to localize an electron in a small volume

∆V is ψ2∗∆V.

Probability density here is visualized as density of the dots.

As the density of the dots increases near the nucleus, it is more likely to find the electron

close to the nucleus than further away from the nucleus. Because each dot is the result of a

localization thus changing the ψ-function from one form to another, this interpretation gives

not an intuitive understanding of  the orbital of the ψ-function in one stationary state.

Most physics textbooks prefer this interpretation.

Fig. 1: Probability
density
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Interpretation II: Continuous distribution of  charge density, electron cloud

In interpretation II, e∗ψ2 is seen as  charge density, which is continuously distributed around

the nucleus in stationary states of atoms.

a. Fig. 2 shows the charge distribution of one electron around

the nucleus in the ground state of the H atom. The charge is

spread out over a large volume compared to the nucleus. 6

b. e∗ψ2∗∆V is the part of the electron charge in the volume ∆V.

As it is important for the notion of stationary state that we

abandon the notions of orbits and movement from this concept,

we prefer this interpretation II with a stationary continuous distribution e∗ψ2 against a particle

view of "probability of finding the particle" 7. We  emphasize that visualizing an electron as a

particle much smaller than its orbital is confusing and not very helpful to get an intuitive

picture of the electron  in a stationary state. A continuum view of a distribution of density

seems more adequate and can be fostered by using an (intermediate) conception of smeared

charge. This view is often preferred also by chemists. This interpretation II provides a picture

of the ψ-function which is easy to understand and is close to an interpretation from

Schrödinger:

"But there is something tangibly real behind the present conception also, namely, the very
real electrodynamically effective fluctuations of the electric space density." 8

The reasons for preferring interpretation II are:

• "Finding" suggests that the particle can be found at different points, even in the
unperturbed state, so it moves around. In interpretation II it is very clear that there is no
motion in a stationary state. We have empirical evidence that a probability interpretation
stabilizes the idea of motion between the points of measurement where the electron was
localized 9.

• We found also empirical evidence of the contrary, that using the interpretation of a charge
distribution helps students substantially with getting the idea of no motion in stationary
states. About 80% of the students change from an electron orbit view of electrons in an
atom to an electron cloud view. All students after the course abandon a description of
electrons which includes the notion of motion.10

• This interpretation gives an intuitive notion of an atom in three dimensions in the
unperturbed state, whereas in the probability picture each point results from a localization
process, which destroys the original state completely. Most of our students show a
consistent quantummechanical description of an atom in many different tasks after the
course. 11

• This interpretation helps students consequently to come away from the electron as a
classical particle. Nearly all students develop a good notion of an electron distribution.12

Fig. 2: Charge density
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• The idea of a charge distribution  supports an intuitive understanding of many effects in
atoms, molecules and solids, such as binding energies, shielding effects of inner electrons
on the effective potential, size and form of atoms and molecules.

• From our qualitative empirical research, we know that this view can become especially
fruitful for students to understand the effective potential in higher atoms as a result of
shielding.13.

Some textbooks are supporting this interpretation also. One example:

"Alternatively we can think of the electron as having its charge spread out, or distributed,
as a kind of electron cloud " 14

4. Meaning of ψψψψ '' as curvature of the ψψψψ    -function

The Schrödinger equation is also used for an intuitive understanding of ψ-functions. The term

ψ'' in the Schrödinger equation is interpreted as a change in slope which mainly is

proportional to the curvature. By discussing the Schrödinger equation as a statement for

curvature, many features of atoms (like different sizes of H, He+, and He or spatial form of

nodal distances in different states of H) can be understood in a half quantitative way without

solving the differential equation. The main fact being used is

′′ ∝ − ⋅ψ ψ( )E V (2)

5. Relations between theory and measurement

The idea to connect theory with possible real measurements was stated above. Besides

relating calculated energy eigenvalues to observed spectra, we also discuss different

measurements of size in relation to the ψ-function. We focus especially on the fact that the

size of an atom cannot be determined exactly because the ψ-function is approaching the zero

value asymptotically. The radius of an atom can be determined either as the radius of the last

maximum in our ψ-functions, or as the radius of the last turning point, or as the radius up to

which something like 90% of the charge density of the electron is found inside this radius. In

our manuscripts corresponding methods to determine the radius of atoms are described and

measurement values from literature are documented. Other important data from measurement,

which can be compared to our own theoretical calculations are: ionisation energy, binding

energy of molecules, stable distance of molecules, and energy bands of solids.
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6. The spatial conception of orbitals

We aim at a three-dimensional spacial conception of atoms. This can be fostered by

discussing three-dimensional standing sound waves in a spherical tube, and by discussing

both orbitals and nodal surfaces of different states, for instance in hydrogen.15

7. The analogy of standing waves

" In this paper I wish to consider, first, the simple case of the hydrogen atom (non-
relativistic and unperturbed), and show that the customary quantum conditions can be
replaced by another postulate, in which the notion of "whole numbers", merely as such, is
not introduced. Rather when integralness does appear, it arises in the same natural way as
it does in the case of the note-numbers of a vibrating string.  The new conception is
capable of generalization and it strikes, I believe, very deeply at the true nature of the new
quantum rules." 16

The fundamental equation that describes bound electrons is a differential equation, called the

Schrödinger equation (1). This equation has a very similar structure to the differential

equation of standing waves. On the left side is the second derivative of a kind of amplitude

function, called distribution function (ψ-function, Psi-function, amplitude function), on the

right side is the distribution function itself. The analogy is shown in Fig. 3.

String Atom

Frequency fn       Energy En

Amplitude yn(x) Amplitude ψn(r)

Nodal points Nodal surfaces

Border condition: node (y=0) Border condition: ψ => 0

Mass distribution Potential function

m' = f(x)  (variable mass density) V=V(r)   (Potential well)

yn´´(x)   ~  −  fn2 ∗ m'(x) ∗ yn(x) ψn´´(r) ~  −  [En  − V(r)] ∗ ψn(r)

Fig. 3. Analogy between stationnary states on strings and in atoms

The analogy is not only mathematical, it gives a better understanding of states, spatial

distribution, nodal surfaces and eigenvalues.

State  n
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8. The use of model building software

In our courses we use modeling software like e.g. STELLA or MODELLUS  to model the

differential equations for standing waves and the Schrödinger equation and to find the

graphical solutions for different cases such as hydrogen, helium, lithium, and hydrogen

molecule ion by systematically varying the values of frequency or total energy respectively .

In principle, this can be done by many different programs (like e.g. Excel or Mathematica). In

Niedderer&Deylitz (1997, 1998) the model building software STELLA17 is used for standing

waves, hydrogen, helium and lithium. In Niedderer&Petri (2000) the model building software

MODELLUS 18 is used for the same cases and in addition for the H2+ molecule and for

simple models of solids. STELLA is a modeling software with a graphical surface, which

facilitates the formulation of equations and helps for better understanding like a concept

map.19 The differential equation is represented by graphical objects. Each object stands for a

quantity in the equation. These objects have to be connected with arrows that show how the

quantities relate to each other.

 MODELLUS is equation oriented, which perhaps is easier for learners who already have a

good command and understanding of mathematical equations including differential equations.

III. COURSE STRUCTURE AND STUDENT ACTIVITIES

The course was about five times taught as the fourth part of a two-year introductory course

called atomic and nuclear physics. The first eight weeks of the semester were devoted to

atomic physics (see Table I). Students every week had three hours of lecture, two hours of

lab, and one hour working with a tutor. In addition to the lab work and the computer labs they

had homework assignments with quantitative calculus based tasks every week. Textbooks

which were used were mainly Orear (1982), Meyer-Kuckuck (1997), and Tipler (1991).
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Table I. Course structure for second year introductory physics course

Week
No.

Topic Labwork Computer Lab

1 Quantum view of light Photoelectric effect -
2 Quantum view of electrons Electron diffraction -
3 Standing waves: states,

eigenfrequencies, amplitude
function

Measuring standing waves on a
string with non-homogeneous
mass distribution

Modeling standing waves on a string
with non-homogeneous mass
distribution

4 Hydrogen atom: states and
energy levels

Franck-Hertz experiment -

5 Schrödinger equation Hydrogen spectrum
Measurement values about the
size of the hydrogen atom from
literature

Modeling spherically symmetric
states of the hydrogen atom, deter-
mining eigenenergies and amplitude
functions

6 Higher atoms: He, Li Results about spectra and size of
atoms from literature

Modeling He- and Li-atoms (ground
state)

7 The H2+ molecule Measurement values about H2+
(distance, binding energy) from
literature

Modeling the H2+ molecule
a. with square well potentials using
"cT quantum well" software
b. with Coulomb potentials

8 Solid state Measurement values about NaCl
(energy bands) from literature

Modeling a solid with 4 atoms, using
square well potentials with "cT
quantum well" software

IV. PREPARATION OF BASIC CONCEPTS "STATIONARY STATE",
"EIGENVALUE" AND "AMPLITUDE FUNCTION" USING STANDING WAVES

A. Standing waves in 2 and 3 dimensions

The conception of standing waves in one, two and three dimensions is most helpful to develop

a spatial conception of atoms with the basic concept of stationary state. Table II shows some

basic structures.

Table II. Standing waves in 1, 2 and 3 dimensions

Standing wave One-dimensional Two-dimensional Three-dimensional
Kind of nodes Points Lines Surfaces
Nodal systems One System Two systems, e.g.

Circles and straight lines
Three systems, e.g. spherical
surfaces, planes and cones

State numbers One, e.g. n Two, e.g. n , m Three, e.g. n,  m, l

Especially three-dimensional standing waves, e.g. sound waves in a glass sphere, can be

analyzed and modeled in full analogy to the hydrogen atom. Especially the fact that the

angular functions are identical to those in hydrogen 20 proves that this is true in a very specific

sense. Of course, the radial distribution is different because of the Coulomb potential. 21
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In two dimensions, we can demonstrate the concept of stationary state with a tambourin

excited by appropriate frequencies by means of an ordinary loudspeaker. Some results are

given in Fig. 4.

Eigen-frequencies and nodal lines 

of a  tambourine

Fig. 4. Eigen-frequencies and nodal lines
of standing sound waves on a tambourine

B. Amplitude functions of standing waves on a string with  non-homogeneous
mass distribution

By non-homogenous mass distribution we mean that the mass density of the string is not

constant over its entire length. The string is – in simple words – at some positions heavier

than at others. As a result of this one could expect that the string shows different eigen-

frequencies and amplitude functions for standing waves. As an example we use a string of the

length of 0.53 m that has a mass density of 0.78 g/m for the first 0.38 m (only string), and 8.0

g/m for the remaining 0.15 m (string plus beads, see Fig. 5).

0.15 m0.38 m

generator

roll

weight

stringwithoutbeads stringwithbeads

Fig.5. Apparatus for investigating standing waves on a string
with non-homogeneous mass distribution



10

As a result of the weight hanging off the string at the left end we find a constant tension over

the entire string. On the right side the string is connected to a generator which can move up

and down with adjustable frequency to stimulate the string to oscillate.  The first three states

of this experiment are shown in Fig. 6.

Result of measurement (photo) Result of computer model

State n = 1, f 1= 8.6 Hz State n = 1, f1 = 8.45 Hz

0 0.13 0.27 0.40 0.53
x in m

0

0.5
y(x)

State n = 2, f2 = 20 Hz State n = 2, f2= 19.6 Hz

0 0.13 0.27 0.40 0.53
x in m

-0.25

0.25 y(x)

State n = 3, f3 = 27 Hz State n = 3, f3 = 25.8 Hz

0 0.13 0.27 0.40 0.53

x in m

-0.25

0.25 y(x)

Fig. 6. Results of measurement and model calculation for the first three states
of standing waves on a non-homogeneous string

Important features of this activity with experiment and computer modeling are:

• The amplitude function can be seen in the experiment also, not only theoretically
• Students  are introduced to the modeling software  and develop a feeling of competence

by being able to directly compare their theoretical models with the obvious experimental
facts.

• They observe stationary states,  learn to name them, learn to find eigenvalues and
amplitude functions

• Students experience the important relation between eigenvalues and boundary conditions
during the process of determining the eigen frequencies by trial and error, guided by the
understanding of curvature.

The amplitude functions shown  on the left side of   Fig. 6  are real photos, the frequencies

have been measured. Because of the non-homogeneous mass distribution the frequencies do

not show constant ratios and the shape of the amplitude functions has changed significantly.

The curvature of the string is larger in the area of higher mass density, therefore the positions

of the nodes are shifted to the  area of higher mass density.
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The experiment  clarifies how  the curvature of the standing wave on the string depends on

three parameters: the tension Fs (from the weight), the mass density ms (mass per unit length),

and on the frequency f. This – in addition to a possible theoretical derivation – gives an

intuitive understanding of the differential equation:

′′ = − ⋅ ⋅ ⋅y x f
m x

F
y xs

s

( )
( )

( )4 2 2π (3)

The mass density ms does not have to be constant. It can be written as ms(x), which means

that the density varies with the position x, e.g. by putting beads on the string.

C. Modeling standing waves with STELLA

We give students modeling software like  STELLA as a tool. With this tool, they themselves

can theoretically determine the amplitude functions of standing waves with non-homogeneous

mass distribution, based on the differential equation. From the model we get the amplitude-

functions graphically and also the eigenfrequencies of the standing waves.

In the model (Fig. 7), all quantities from the differential equation (Equ 3) can be found. y is

the amplitude function, ys its first derivative and y“=curvature its second derivative. Fs is the

force of the weight attached to the string (i.e. the tension in the string), f the frequency, and

ms the mass density depending on the position x.

STELLA model for standing waves

f

curvature slope

x

Fs

yys

~

msy

const

STELLA model equations

y(t) = y(t - dt) + (slope) * dt
INIT y =  0
INFLOWS:
slope =  ys
ys(t) = ys(t-dt)+(Curvature)*dt
INIT ys =  1

INFLOWS:
Curvature=-c*f^2*(ms/Fs)*y
c = 4*pi^2*1e-3
f = 8.6 {Hz}, Fs = .2 {N}
x = time
ms = GRAPH(x)

Fig. 7. STELLA model and model equations
for standing waves on an inhomogeneous string
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We have to enter the values for Fs, f, and ms and the initial values for y (must be zero because

the amplitude function starts with a node) and ys (can be any value except zero because the

amplitude function starts with a slope not equal zero). The equation for the curvature

"curvature“ is our differential equation. STELLA always names the x-variable TIME although

in this model the x-axis is the position. Therefore we need an object for the position x with the

equation x = TIME.

Results are shown in the Fig. 6 above.

V. THE HYDROGEN ATOM

A. Description of bound electrons as  stationary states

Now, we describe startionary states in atoms. The basics are:

• Electrons are bound in atoms in discrete states; (stationary states, eigenstates). In atomic
Physics the state numbers n, m, l are called quantum numbers.

• Each state is characterized by an eigenvalue of  the binding energy of the electron. Similar
to the eigenfrequencies of standing waves we find certain values of eigenenergies
(discrete eigenenergies).

• According to the amplitude function of standing waves, we have the ψ–function to
describe the spatial form of atoms. It is found by solving the Schrödinger equation. The
Schrödinger equation in the simplest 1-dimensional case is given in equation (1).

To solve  the three-dimensional Schrödinger equation for spherically symmetric cases (l=0, s-

states), the three-dimensional Schrödinger equation can be reduced to the following form

′′ = − ⋅ ⋅ − ⋅u r
m

h
E V r u re( ) ( ( )) ( )8 2

2
π (4)

with ψ( )
( )

r
u r

r
= , and e∗u2 having the meaning of radial charge density. So the students solve

the one-dimensional problem with the modeling software and get u(r). From that they can

easily calculate the three dimensional state functions of spherical symmetric eigenstates as

displayed in almost every textbook as ψ( )
( )

r
u r

r
=

.

The potential V(r) is the Coulomb potential of the nucleus. The equation shows the Coulomb

potential of the hydrogen atom.

V r
e
r

( ) = −
⋅ ⋅

⋅
1

4 0

2

π ε
 (5)

If we use nm as unit for r and eV as unit for V, we get V(r)=-1.44/r.
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We want to summarize how to calculate the charge distribution (see diagrams below):

• put in the potential V(r) of the nucleus into the Schrödinger equation
• solving the equation gives the eigenenergy E and the radial distribution function u(r)
• dividing the radial distribution function u(r) by r gives the distribution function ψ (r)
• e∗ψ (r)2 gives the charge density of the cloud around the nucleus
• now we can draw e∗ψ (r)2 in two dimensions to get the picture of the charge cloud.

B. Modeling the Hydrogen atom with STELLA

We can solve the Schrödinger equation analytically (a second order differential equation) for

hydrogen, and we do it with our second year teacher students. But more important cases for

higher atoms, molecules and solids can only be solved iteratively with help of the computer.

So we let STELLA do the work for us. For this purpose we need a STELLA model, which is

very similar to the model of standing waves.

STELLA model for hydrogen

E

curvature slope
uus

V r

psi

STELLA model equations

u(t) = u(t - dt) + (slope) * dt
INIT u =  0
INFLOWS:
slope =  us
us(t) =us(t - dt)+(curvature)*dt
INIT us =  1

INFLOWS:
curvature=-26.25*(E-V)*u
E = -13.6 {eV}
psi = u/r
r = time {nm}
V = -1.44/r

Fig. 8. STELLA model and model equations
for calculating s-states in hydrogen atom

The model (Fig. 8) contains all quantities of the equation (4): energy E, potential V, radial

distribution function u(r) and its second derivative curvature (=u''(r)). Two objects have been

added. r = TIME (the radius) and Psi = u/r (definition of the Psi-function). Here, we use

8 26 252
2

π ⋅ =
m

h
e .  for units nm and eV. This is the input for the STELLA model. The starting

value for radial distribution functions u(r) is zero, the slope can be any value except zero (e.g.

1). Now the eigenstates with there energy and u(r) are determined by trial and error, using
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tentatively different values of E. An eigenstate is found, if the u(r)-function approaches zero

when r becomes large. Only in these cases we find the electron inside the atom!

C. Results from STELLA calculations of the Hydrogen atom

(first three states)

State n with ψψψψn  and En Charge cloud    e∗∗∗∗ψψψψn
2

r in m0 . 0 1 . 5 e - 0 9
- 0 . 3

0 . 3

0 . 9
psi

0

3s-state, E3=-1.5 eV

r in m0 . 0 1 . 5 e - 0 9
- 0 . 3

0 . 3

0 . 9
psi

0

2s-state, E2=-3.4 eV

r in m0 . 0 1 . 5 e - 0 9
- 0 . 3

0 . 3

0 . 9
psi

0

1s-state, E1=-13.6 eV

3s-state

2s-state

1s-state

Fig. 9. Results from STELLA calculations
with the first three states of the hydrogen atom

The charge density pictures were produced form our own STELLA data with a special

software22.
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VI. FURTHER CALCULATIONS ON HIGHER ATOMS

A. He atom

For calculating shielding effects in atoms with more than one electron e.g. He, Li and Be - we

use the following basic ideas for simplification:

• The potential for small values of r in the neighbourhood of the nucleus is proportional to
V= − z∗1.44/r,  where z is the number of protons in the nucleus.

• The potential for an electron being far outside is the same as the hydrogen potential V =
 −  1,44/r, because the positive charge is z∗e and the negative charge is (z – 1)∗e coming
from the other electrons.

• So we assume that the potential for one electron is determined by a potential running in
between V= − 2∗1.44/r and V =  −  1,44/r.

• The shielding effect of one electron on the potential at a distance r can be estimated by the
"part of the electron (el-part)" being found in distances smaller than r:

shielding charge ( r ) = e u dr
r

⋅ ⋅∫
2

0

      or     el part r u dr
r

− = ⋅∫( ) 2

0

 (6)

• With this equation, the effective potential for electron 1 with a shielding effect from
electron 2 can be written for helium in the following way:

V_1 =  − (2  −  el–part2)*1.44/r (7)

This potential is shown in Fig. 10.

Fig. 10. The effective potential V1 for electron 1, calculated with STELLA,
compared to the H-potential Cb1 and He-potential Cb2

This means a slightly different potential than the one usually used in the Hartree approach.23
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Thus, for the helium atom, we get the model shown in Fig. 11 and results shown in Fig. 12

and 13.

STELLA model for He

E1

el–part1
curvature 1 slope 1

r

u1us1

V 1u1

usq1

c 1

E2

el–part2
curvature 2 slope 2

u2us2

V 2u2

usq2

r c 2

Electron 1

Electron 2

Fig. 11. STELLA model for the He-atom

For the ground state of helium, we assume both electrons being in a 1 s state. The values for

energy and normalization constant are found by systematical trial and error.

0 0.05 0.10 0.15 0.20

Radius in nm

0

0.5

1.0
el–part1

Fig. 12. The part of electron one (el-part1)
being inside r (normalized)

0 0.05 0.10 0.15 0.20

Radius in nm

0

0.01

u1

Fig. 13. Resulting u-function for the two 1s-electrons in He,
calculated with STELLA
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From the energy eigenvalues of the two electrons we get a total energy for the ground state of

73 eV. For comparison: the measured value for the total ionisation energy is 79 eV. From the

u2-curve we see that the helium atom is smaller than the hydrogen atom. Its radius is about

0.025 nm, compared to 0.05 nm for H. The measured and calculated radii are given in Table

III below.

B. Li atom

For the lithium atom we can get a STELLA model working in the same way. For each of the

three electrons we have one part of the model (see Fig. 14). The effective potential for one

electron then is influenced by the shielding effects from the two other. So we get for instance

the effective potential for electron one in the following equation:

V_1 = -(3 − el-part2 − el-part3)*1.44/r
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Fig. 14. STELLA model of the Li-atom

Our results for energies are E1 = E2 = -95.3 eV, e3 = - 5.72 eV. This means the total energy

in the ground state becomes - 196.3 eV. From literature we know the value is 203.5 eV.
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With this STELLA model, we come to the following u2-graphs:
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Fig. 15. Resulting u2-functions for the Li-atom
(calculated with STELLA)

From this graph, we can estimate the radius of the lithium atom with about 0.2 nm for the

outer turning point, from literature we get the value 0.23 nm (see Table III).

Excited states can be calculated in similar ways (see our manuscripts).

For molecules and solids we have done some similar calculations for the H2+ molecule and

for a model solid with four atoms.24

VII. COMPARISON WITH MEASUREMENTS

A. Balmer spectrum for H, spectral lines for He and Li

Using the hydrogen Balmer spectral lamp, students can make measurements of spectral lines

themselves and compare them with the differences between there own results of energy

eigenvalues, which gives the well known equal results. For He and Li, students get selected

spectral lines from literature for comparison with their STELLA calculations.

B. Size of different atoms

From their own calculations with STELLA, students get estimates of the size of different

atoms. These are compared to different given measurement values from literature. Table III

below shows measured radii with different methods from literature25 and our own calculated

atomic radii of Hydrogen, Helium, Lithium and the Lithium+-ion.



19

Table III. Measured and calculated values for radii of atoms

Measured radii from literature
Element Covalent bond Van der Waals Ion bond

H 0.030 nm 0.14 nm -
He - 0.14 nm -
Li 0.23 nm - -

Li + - - 0.068 nm

Calculated radii from STELLA models
element Last maximum

of u
70% of charge 90% of charge

H 0.053 nm 0.093 nm 0.14 nm
He 0.025 nm 0.045 nm 0.070 nm
Li 0.14 nm 0.22 nm 0.30 nm

Li 
 

+ - 0.030 nm 0.050 nm

These comparisons show to students that they themselves were able to calculate basic features

of some atoms in a satisfactory way.
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