Science Teachers' Perceived Demands in the Context of Teaching with HPS

A. Henke

Institut für Didaktik der Naturwissenschaften Universität Bremen

D. Höttecke

Implementing HPS in Science Teaching

Status: Weak adoption of HS based teaching approaches

Obstacles to HPS implementation (Höttecke & Silva 2011)

- Authoritative culture of school science teaching
- Unsupportive institutional framework
- Inadequate textbooks and curricular materials
- Incompatible science teachers' attitudes and beliefs

Implementing HPS in Science Teaching

Assumptions hindering adoption of teaching innovations

"My educational success depends on... (Tobin & McRobbie 1996)

... being efficient"

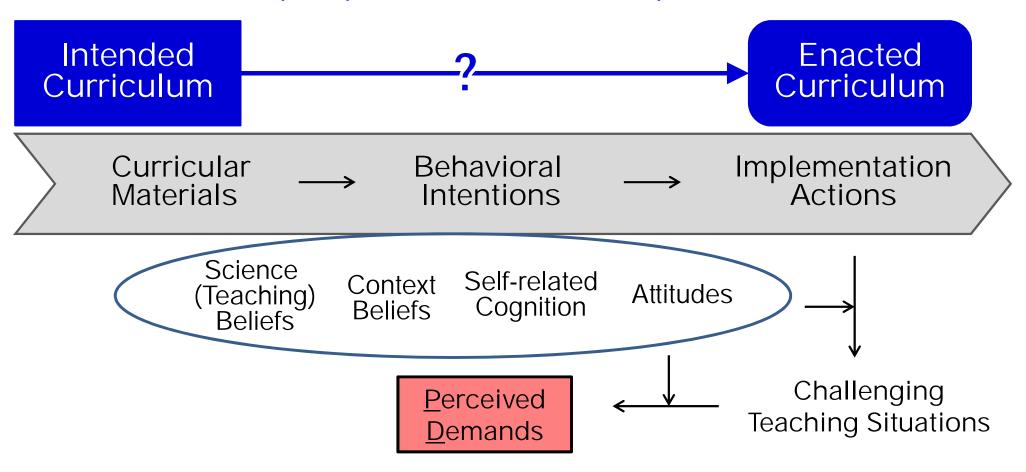
... maintaining the rigor of the curriculum"

... preparing students for examinations"

... transmitting science content knowledge"

Problem:

- External view
- HPS unspecific



Implementing HPS as Intentional Action

How do teachers' perspectives influence implementation of HPS?

- Subjective theories about challenges of HPS
- Influence future implementation intentions

HPS in ST: Teachers' Perceived Demands

Interview study: 8 physics teachers, early-adopters of HPS

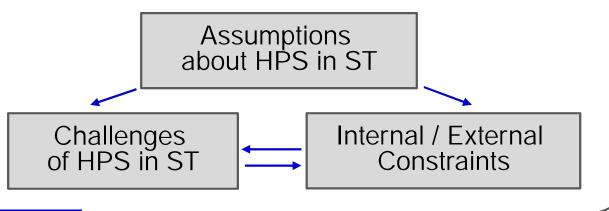
HIPST Project Autonomous **Focused Interview** Development **Implementation** Reflection curricular materials, **HPS-based** Perceived Demands teacher training physics lessons with HPS

HPS Characteristics

- Case studies with a central storyline
- Historical investigative approach
- Guided inquiry with replications
- NOS(I) explicit reflection

Data Analysis and Validation

- 1. Qualitative Content Analysis
 - Contexts of challenging teaching experiences


Lesson Crchestration Lesson Planning/Development

Students' Institutional Context

Characteristics

HPS Challenges Inter-Coder Agreement: 84% (α =0.7)

- 2. Reconstructing subjective theories
 - Within- & cross-case comparisons

Perceived Demands
Communicative
Validation

Lesson Orchestration Lesson Planning/ **Development**

Students' Characteristics Institutional Context

Handling students' characteristics relevant to HPS

- Interests/Motivational Dispositions
 - Age / gender based differences
 - Preference for everyday-contexts
- II. Science Teaching Expectations
 - Content aims, simple investigations
 - Teaching methods fitting physics' subject culture
- III. Preconceptions about History
 - Making sense by everyday-analogies
 - Judging historical research from modern points of view

Results - Overview

Perceived Demands

Lesson Orchestration

Students' Characteristics Lesson Planning/ Development

> Institutional Context

Orchestrating HPS-based Lessons

- Align historical concepts, students' ideas & inquiry results
 - Foster reasoning within historical conceptual frames
 - Appreciate inquiry results in conflict with modern ideas
 - Provide alternative/transitional explanations for inquiry data

- II. Coordinate storyline approach & student-centered activities
 - Storyline prescribing lesson events, reducing spontaneity
 - Students' inquiry results tied to storyline-progress

Results - Overview

Perceived Demands

Lesson Orchestration

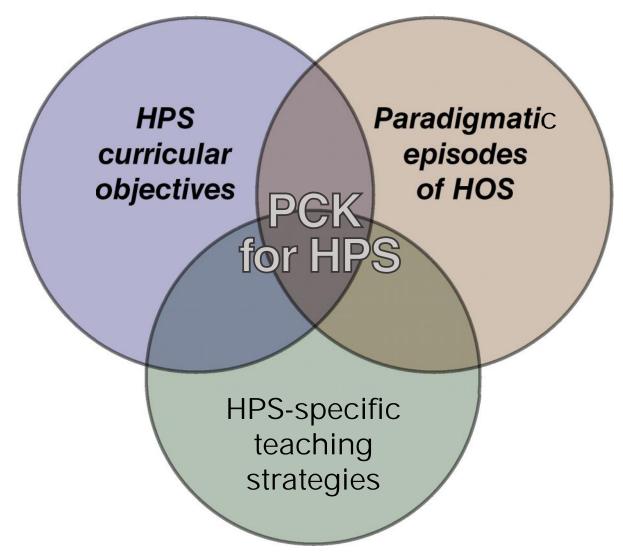
Students' Characteristics Lesson Planning/ **Development**

> Institutional Context

Planning HPS based lessons

- Inadequate curricular materials
 - Insufficient curricular alignment
 - Ambitious standards for students activities
 - Text heavy preparatory materials, classroom activities
 - No suggestions for accompanying use of textbooks

- 11. Novel planning decisions
 - Degree of modernizing historical apparatus
 - Degree of simplifying contextual information



Developing HPS based physics lessons

The need for pedagogical content knowledge for HPS:

Summary & Further Questions

Perceived Demands in the context of HPS in ST

- Inside-View on HPS specific obstacles to implementation
- Tied to beliefs about teaching with HPS
- Resource for teacher taining to raise HPS teaching efficacy
- Point out deficiencies of curricular materials

Further Research:

- Predictive power for implementation actions
- Role in transformation of HPS curricular materials
- Challenges of other approaches of HPS in ST
- ➤ Beliefs of HPS-<u>in</u>experienced teachers

Bonus: Structure of the Interview

- Features of their HPS based lessons
- Challenging situations connected to:
 - conceptual learning,
 - learning about the NOS
 - HPS teaching practices and
 - HPS lesson preparation/curricular materials
- Discussion prompts:
 - Similarities and differences between HPS and non-HPS based lessons.
 - What would make you make feel more secure in these situations?
 - What would be a (dis-)satisfying outcome of this lesson/situation?
 - What might cause more(less) problems for less(more) experienced teachers?
 - What might (not even) be achievable with more routine?

Bonus: Institutional factors relevant to HPS

Curricular legitimation

- Physics-Curricula unclear about HPS
- Colleagues' expectations content-centered

Testing & Assessment

- Centralized testing without hist. contexts, NOS
- How to design HPS-based examinations

